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Abstract

Current game bots lack the emotional depth, spontaneity, and intent that make human play-
ers compelling, resulting in predictable interactions and broken immersion. We propose a
framework for building believable Al agents that behave convincingly enough to evoke
emotional engagement without requiring true sentience. Drawing from narrative theory
and human psychology, our approach focuses on four key components: personality, needs,
emotion, and memory. Together, these modules drive behavior that appears motivated,
context-sensitive, and consistent over time. Much like how audiences connect with fic-
tional characters, players can suspend disbelief when bots behave in ways that suggest
underlying intention. This play-acting approach offers a scalable path to lifelike game
agents — enabling emergent gameplay, dynamic world population, automated testing, and
emotionally resonant interactions — not by replicating consciousness, but by engineering
behavior that is rich enough, reactive enough, and real enough to be believed.
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1 Introduction

Humans in multiplayer games offer a fundamentally richer and more engaging experience than
bots, due to their unpredictability, emotional reactivity, and complex intentions [Bates, 1994,
Nass and Moon, 2000]. Anecdotal examples illustrate this clearly: whether it is summoning a
mech in Helldivers 2 and accidentally flattening your friends, or hearing a colleague shouting in
frustration during a competitive FPS session, these events are emotionally resonant because the
participants are human. They respond in nuanced, emotionally driven, and sometimes irrational
ways that bots cannot yet replicate. Bots tend to behave in predictable, mechanical patterns
that lack spontaneity or emotional variability, causing interactions to feel flat and forgettable
by comparison.

One core reason for this disparity is the presence of perceived intentionality and emotional
stakes in human play. When we compete against other players, we implicitly understand that
they have goals, preferences, and internal motivations - features that we attribute to minds
similar to our own [Turing, 1950, Heider and Simmel, 1944]]. Thus, victory in a competitive
game against a human opponent feels deeply satisfying because we have asserted our will over
another conscious entity. This creates a sense of consequence and emotional payoff that bots
fail to deliver. Their behavior lacks internal narrative coherence; they don’t want anything, so
defeating them is less impactful. Even humorous or chaotic moments in multiplayer games rely
on a shared understanding of why someone acted the way they did. This understanding hinges
on our ability to empathize with and interpret others’ actions through the lens of human-like
intention [Mateas, 1999].

To recreate this sense of meaningful interaction with nonhuman agents, we argue for a
design approach based on ’play-acting’ rather than true artificial sentience. In books and films,
audiences routinely suspend disbelief and emotionally invest in characters they know to be
fictional. This is possible because those characters exhibit believable motivations and consistent
internal logic [Smith et al., 2023]]. Similarly, bots in games need not be fully autonomous or
sentient to feel human-like—they must simply behave in ways that allow players to intuitively
project intention and emotion onto them. This means crafting bot behaviors that respond to
context, reflect plausible motivations, and display transient emotional modulation [Park et al.,
2023]. When bots exhibit behavior that players can interpret as emotionally and cognitively
coherent, even if artificial, the illusion of humanity is preserved, and with it the emotional
depth that makes games memorable.

2 Definitions

2.1 What does it mean for a bot to have human-like behavior?

Here, we define human-like behavior in the context of interactive game agents as behavior that
appears intentional, emotionally grounded, and mentally coherent to human players. This does
not imply true consciousness or cognitive realism. Rather, the focus is on believability: the
degree to which an agent’s actions can be interpreted as stemming from internal motivations
such as goals, preferences, or emotions. The objective is not to model human cognition with
fidelity, but to simulate behavior that feels socially and emotionally coherent [McCrae and
John, 1992, |Ortony et al., 1988)]].

This is the same principle that allows audiences to connect with fictional characters in
books or films. Although we know that they are not real, we still empathize with them because
their actions make sense within a recognizable human framework [Mateas, 1999]]. It is the



role of authors and directors to ensure that these characters feel believable. In our case, this
believability will emerge automatically by ensuring that all agents exhibit behavior consistent
with a defined personality and responsive to changing context. The result is not true sentience,
but the illusion of agency: agents that act as if they have minds and internal lives of their own.

2.2 Current bots’ mechanisms of failure

Modern bots consistently fail to meet the behavioral threshold required for immersion. Most are
built around deterministic scripts or reactive state machines that result in shallow and repetitive
behavior. Their dialogue is often generic, lacking any personal context or emotional variability,
and their responses are typically disconnected from prior interactions [Warpefelt and Verhagen,
2017].

This problem persists even with newer LLM-driven bots. While their surface fluency can
mask it temporarily, these bots are ultimately just sophisticated skins over the same helpful
assistant” paradigm. At their core, they are fine-tuned foundation models trained to assist users
in a call-and-response format — designed to reflect and validate the user’s input rather than
simulate an independent mind [Zhu et al., 2024]. As such, they exhibit no true intentionality:
they wait to be prompted, then offer helpful, polite, and often overly agreeable replies. Even
when dropped into game worlds or interactive narratives, they remain fundamentally passive,
more akin to sounding boards than characters.

A key failure mode underlying both traditional and LLM-based bots is the absence of auton-
omy. Bots rarely initiate, pursue goals, or act in ways that suggest independent thought. Emo-
tional flatness compounds the issue — bots often fail to respond meaningfully to praise, insult,
conflict, or emotionally charged events that would elicit clear reactions from a human [Smith
et al., 2023]]. Moreover, most are stateless, unable to remember past exchanges or evolve their
behavior over time. This lack of continuity and internal growth further breaks the illusion of
believability, making the bot’s artificial nature quickly apparent. Until bots are equipped with
a behavioral model capable of supporting autonomous, emotionally grounded, and persistent
decision-making, they will remain tools — not characters. But when this agency is added, even
simple bots can begin to cross the threshold into fully human-like agents [Xie et al., 2024, del
Rio-Chanona et al., 2024].

2.3 What are the minimum requirements?

To cross the threshold into believability, an agent must satisfy a minimum set of behavioral
criteria:

* Stable, Recognizable Personality: Agents should exhibit a consistent identity that mod-
ulates decision-making and responses. This personality must persist over time, while
remaining flexible enough to adapt to changing environmental or social context.

* Internal and External Motivations (Needs): Behavior should be driven by explic-
itly modeled needs such as hunger, belonging, curiosity, or personal success. These
drives provide psychological coherence and help explain why an agent behaves the way
it does [Maslow, 1943]]. In multi-agent simulations social drives also play a large role
and have been studied in the context of economic games [Xie et al., 2024].

* Emotionally Modulated Behavior: Agents should be influenced by transient emotional
states that arise in response to events or stimuli. These emotional shifts introduce short-
term behavioral variability and enhance perceived emotional depth.
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* Short- and Long-Term Memory: Agents must retain both immediate situational con-
text (short-term memory) and accumulated interaction history (long-term memory). This
allows behavior to evolve meaningfully over time and prevents the impression of state-
less, mechanical responses.

Together, these components enable agents to move beyond surface-level mimicry and begin
approximating the expressive and adaptive nature of human behavior in games.

3 Potential Benefits of Human-like Agents

3.1 More authentic gameplay

Human-like agents have the potential to dramatically increase the authenticity of gameplay
experiences. In current multiplayer games, the richness of the experience often derives from
the unpredictability, emotion, and intentionality of human opponents or allies [Nass and Moon,
2000]]. Bots that behave in flat, mechanical ways cannot replicate this depth. By contrast, agents
with distinct personalities, motivations, and emotional reactivity can contribute to emergent
moments that feel genuinely meaningful [Bates, 1994].

For example, an agent that panics and flees when outnumbered, or seeks revenge after being
wronged, creates situations that feel narratively and emotionally charged [Park et al., 2023].
These moments are what players remember and talk about — often more so than scripted set
pieces. Human-like agents can thus preserve the emotional weight of interactions, making
victories feel earned, betrayals feel personal, and cooperation feel authentic.

3.2 Automatic population of game worlds

Populating large-scale game worlds with believable characters is a time-consuming and resource-
intensive task. Designers must write dialogue, design behavior trees, and manually script events
to simulate life. Human-like agents offer an alternative: agents that autonomously populate and
animate the world through emergent, goal-directed behavior [Warpefelt and Verhagen, 2017]].

Rather than requiring bespoke scripting for every scenario, human-like agents can be seeded
into the world with personalities, needs, and objectives, and allowed to act independently [Park
et al., 2023|]. This creates a more dynamic and persistent sense of place — villagers with daily
routines, rival factions with shifting alliances, or lone wanderers with evolving goals. These
agents contribute not only to realism, but to systems-driven storytelling that can surprise even
the developers themselves.

3.3 Automated play and balance testing

Game balance traditionally requires human playtesters to explore the edge cases and emergent
strategies that arise from complex systems. This process is slow, expensive, and often limited
in scope. Agents with human-like motivations and varying play styles can serve as surrogate
players — automatically exploring a game’s mechanics and surfacing imbalances or unintended
strategies [Orkin and Roy, 2007]].

By tuning the personalities and skill levels of these agents, designers can simulate a wide
range of player types: competitive min-maxers, curious explorers, casual roleplayers, and
more [Soni and Hingston, 2008|]. This allows for more thorough testing across the game’s



entire design space. Additionally, these agents can serve as long-term regression testers, con-
tinuously interacting with the system during development and identifying design regressions or
exploits over time [Zhu et al., 2024].

4 Proposed Model Architecture

4.1 The architecture
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Figure 1: Proposed modular architecture for generating human-like behavior in interactive
game agents. The system integrates perception, decision-making, memory, emotion, and agen-
tic traits — such as cultural background, personal history, personality, play style, and skill — into
a unified behavioral model.

We propose a modular architecture designed to support the generation of dynamic, context-
aware behavior in game agents. This system operates on two primary loops: a fast loop for
real-time decision-making and a slow loop for long-term planning, internal consistency and
psychological depth [Rao and Georgeft, 1995| Laird, 2001]]. Together, these loops allow agents
to react instantaneously to the environment while evolving their behavior based on internal
dynamics like personality, needs, and memory.

The architecture consists of the following major components:

* Perception Layer: Captures real-time information from the game environment, includ-
ing sensory inputs and symbolic game state. This layer provides the agent’s situational
awareness for immediate reactions.

* Behavior Model: Translates the internal state representation into concrete actions. This
model is responsible for executing decisions in the game world, reflecting the agent’s
personality and real-time priorities.

* Emotion Module: Integrates with the personality module to modulate decisions based
on the agent’s current emotional state, ensuring that emotions influence behavior in a
consistent manner.

* Memory System: Divided into short-term memory, which stores recent events and con-
text, and long-term memory, which stores experiences that contribute to personality.
Short term memories can become long-term memories through reflection.
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* Personality Module: Encodes the agent’s stable personality traits, ensuring that all de-
cisions align with these core attributes, providing consistency and depth to its behavior.

* Needs Module: Models the evolving internal and external motivations of the agent, ad-
justing over time based on the passage of time and the agent’s experiences. This module
influences the agent’s priorities and decision-making.

* Long-Term Memory Reflection: Reflects on the short-term memory and creates core
long-term memories that evolve the agent’s personality and internal state over time.
These memories inform future behavior and strategic decisions.

Information flows through the system as follows: the fast loop processes sensory inputs
and the game state to execute actions, influenced by the agent’s current mental state. The slow
loop integrates feedback from the environment and approximates the temporal evolution of the
agent’s mental state, all while being shaped by a core memory or personality definition. The
personality definition is also able to evolve over time through reflection from the short-term
memory. This creates a system capable of generating both real-time, reactive behavior and
deeper, more strategic decisions that evolve as the agent interacts with its environment and
other players.

4.2 Data collection

Training and evaluating human-like behavior requires large-scale behavioral data from real
players. We propose a hybrid data collection pipeline combining screen capture, structured
game state logs, and player input/action traces. Screen captures mimic human perceptual input,
while symbolic game state provides structured signals about relevant entities and values.

In addition to moment-to-moment action data, we emphasize the collection of higher-
level annotations such as player goals, emotional responses (via chat logs, speech, or behav-
ioral proxies), and strategic context [Orkin and Roy, 2007]. This data can be sourced from
playtesters, streamers, or controlled gameplay studies. Longitudinal tracking of players will
also allow the construction of datasets reflecting evolving play styles and emergent behavioral
patterns over time [Soni and Hingston, 2008].

To address the high cost of large-scale data collection, we propose a complementary strat-
egy based on controlled synthetic generation and inference-driven annotation. By conducting
structured gameplay studies with recruited players, we collect rich behavioral traces paired with
explicit personality assessments [Xie et al., 2024]. These aligned datasets serve as supervision
for training an Inverse Personality Model (IPM)—a predictive model that infers latent person-
ality traits from observed gameplay behavior [Liu et al., 2022]. Once trained, the IPM can
be applied to unlabeled gameplay footage from public sources such as YouTube and Twitch,
enabling scalable estimation of player personality traits across diverse play styles and environ-
ments. In parallel, our agentic framework supports the generation of synthetic gameplay data
that reflects consistent internal motivations and emotional variability. These synthetic agents
can be labeled via the IPM and distilled into downstream models to improve generalization and
robustness across personality-conditioned behaviors.

4.3 Agentic framework

To produce believable and psychologically coherent behavior, we adopt an agentic framework
composed of four interacting components: personality, needs, emotion, and memory. These



components define the internal state of the agent and condition its behavior across time and
context [Park et al., 2023]].

* Personality encodes stable behavioral tendencies that guide how the agent interprets
and responds to situations. Rather than building this from scratch, we condition LLM
outputs on personality embeddings derived from structured trait models (e.g., Big Five,
HEXACO) [McCrae and John, 1992] and gameplay schemas (e.g., Quantic Gamer Mo-
tivations).

* Needs define the agent’s internal drives and priorities. Inspired by frameworks such as
the Maslow hierarchy [Maslow, 1943]], these needs can be implemented as scalar val-
ues or probabilistic activations that modulate goal selection. LLMs can be guided via
prompt augmentation or retrieval-based conditioning to reflect needs such as belonging,
exploration, or status.

¢ Emotion introduces transient, context-sensitive modulation of behavior. The emotional
state is updated based on recent events and tracked as location in valence-arousal space
that influences the tone, urgency, or intensity of responses. LLM behavior is adjusted
through prompt modifiers or emotion-conditioned decoding strategies to create variabil-
ity without inconsistency.

* Memory enables agents to retain continuity across interactions. Short-term memory
captures recent game state, dialogue, and interactions within the current session. Long-
term memory encodes evolving beliefs, preferences, and personal experiences [Tulving,
1972]]. These memories can be stored as structured state or narrative summaries, which
are injected into LLM context windows or retrieved on demand to inform future deci-
sions.

This framework does not require deeply integrated architecture changes, but rather aug-
ments the base capabilities of pretrained LLMs with structured state conditioning and lightweight
behavioral control. The result is a system that supports consistent, adaptive, and emotionally
expressive agents—capable of sustaining the illusion of internal life across extended gameplay.

4.4 Foundation model

As we collect more high-quality gameplay data and refine the agentic control framework, we
anticipate the ability to transition from modular orchestration to a fully integrated, end-to-end
foundation model. Rather than coordinating behavior through a set of separate components
(e.g., emotion, memory, needs), the model will learn to internalize and express these dynamics
directly through training.

This foundation model will take as input a structured representation of the game state and
a compressed encoding of agent history — including both short-term context and persistent
identity traits such as personality and play style [Zhu et al., 2024]. Given sufficient training
data, the model will learn to generate contextually appropriate actions and utterances that reflect
nuanced, psychologically coherent behavior.

Training will leverage a combination of supervised behavioral cloning, reinforcement learn-
ing with human feedback (RLHF), and self-play in both simulated and live multiplayer envi-
ronments [Bai et al., 2022]]. Synthetic data from modular systems and scripted agents can
bootstrap learning and accelerate convergence.



The ultimate goal is to produce a behavior engine that captures the expressive range of the
agentic framework, but with lower latency, reduced runtime complexity and costs, and greater
scalability. As the model architecture improves, we expect it to unify perception, reasoning,
and behavioral generation into a single, generalizable agent core capable of producing lifelike
behavior across a wide range of gameplay contexts.

5 Model Evaluation

5.1 Embodied Turing Test

Evaluating human-like behavior requires more than task performance metrics—it requires as-
sessing how well the model mimics the emotional, social, and behavioral patterns of real play-
ers. To this end, we propose a Turing-style evaluation protocol grounded in social deception:
a multiplayer deduction game in which human participants must distinguish between real and
Al-controlled players based on behavior alone [Turing, 1950].

In this setting, both human and agent-controlled avatars are placed into a shared game
environment. The task of the human players is to identify which entities are Al-agents within
a limited time frame, using in-game actions, communication, and movement cues. Agents
are trained to behave in ways that are consistent, emotionally reactive, and socially plausible,
while humans may issue challenges (e.g., “If you’re human, come to the left wall!””) to probe
for unnatural behavior [Hingston, 2009].

The success of the model is measured by its ability to evade detection — ideally result-
ing in human accuracy near chance level. This approach allows us to quantitatively evaluate
believability across multimodal signals (language, movement, decision-making) while directly
optimizing for the illusion of agency. The same protocol can also be used to collect human
feedback and fine-tune behavioral outputs via reinforcement learning [Bai et al., 2022].

While evading detection remains the primary success metric, this methodology also enables
quantitative evaluation of secondary outcomes such as role alignment, strategic diversity [Xie
et al., 2024], and the agents’ ability to adaptively shift play styles [Heaton, 1981]. Over time,
this evaluation framework will serve as both a benchmarking suite and a source of continual
data collection, further improving the foundation model’s ability to emulate lifelike behavior at
scale.

6 Conclusion

We believe the next major leap in interactive entertainment and Al research lies in building
agents that behave not just logically, but believably — bots become agents when they feel like
they have inner lives, coherent motivations, and the capacity to surprise, amuse, or frustrate us
in deeply human ways. Today’s NPCs and game bots fall far short of this mark: they are static,
mechanical, and emotionally flat. Our framework offers a path forward, one that augments
large language models with lightweight, interpretable agentic scaffolding to produce behavior
that players can genuinely connect with.

By combining modular simulations of personality, needs, emotion, and memory with the
generative power of foundation models, we unlock a powerful synthesis: agents that are both
reactive and expressive, both context-sensitive and narratively grounded. This isn’t just a UX
improvement; it’s the foundation for entirely new kinds of gameplay, emergent storytelling, and
large-scale simulation [Zhu et al., 2024]]. These agents can populate game worlds, test game
balance, and evolve alongside human players—not as placeholders, but as participants.
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